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Summary

A near-wall two-equation model for compressible flows is proposed. The model is
formulated by relaxing the assumption of dynamical field similarity between compressible and
incompressible flows. A postulate is made to justify the extension of incompressible models to
account for compressibility effects. This requires formulating the turbulent kinetic energy equation
in a form similar to its incompressible counterpart. As a result, the compressible dissipation
function has to be split into a solenoidal part, which is not sensitive to changes of compressibility
indicators, and a dilatational part, which is directly affected by these changes. This procedure,
therefore, isolates terms with explicit dependence on compressibility so that they can be modeled
accordingly. An equation that governs the transport of the solenoidal dissipation rate with
additional terms that are explicitly dependent on compressibility effects is derived similarly. A
model with an explicit dependence on the turbulent Mach number is proposed for the dilatational
dissipation rate. Thus formulated, all near-wall incompressible flow models could be expressed in
terms of the solenoidal dissipation rate and straight-forwardly extended to compressible flows.
Therefore, the incompressible equations are recovered correctly in the limit of constant density.
The two-equation model and the assumption of constant turbulent Prandtl number are used to
calculate compressible boundary layers on a flat plate with different wall thermal boundary
conditions and free-stream Mach numbers. The calculated results, including the near-wall
distributions of turbulence statistics and their limiting behavior, are in good agreement with
measurements. In particular, the near-wall asymptotic properties are found to be consistent with
incompressible behavior; thus suggesting that turbulent flows in the viscous sublayer are not much

affected by compressibility effects.
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1. Introduction

Density variation in a turbulent flow can come from different sources. Some of these are:
(i) isothermal mixing of gases of different density, (ii) strong temperature gradient in a
homogeneous fluid, (iii) reactive flows and (iv) compressibility effects in high speed flows. LEach
of these sources gives rise to specific aspects that require modeling if the governing equations are
to be solved. This study makes an attempt to address the last source; that is, the modeling of high

speed compressible turbulent flows.

Most studies on compressible turbulent flow modeling!-? invoke the Morkovin postulate!0
to justify the direct extension of the incompressible models to compressible flows. The postulate
was formulated based on early experiments on compressible boundary layers along adiabatic walls
and compressible wakes, and essentially suggested that the dynamical field in a compressible flow
behaves like an incompressible one. This postulate was used by numerous researchers to assure
that compressibility effects can be accounted for directly by the variable mean density in the
governing equations alone. In other words, the influences of fluctuating density on turbulence
mixing are essentially assumed to be negligible. The validity and extent of Morkovin's postulate
were reviewed by Bradshaw? and he noted that the postulate is appropriate for flows where density
fluctuations are moderate. Therefore, the postulate is not valid for hypersonic boundary layers,
where the Mach number is five or greater, and for flows with strong pressure gradient effects,
such as shock-turbulent-boundary-layer interactions. The latter point was confirmed by the studies
of Wilcox and Alber! and Bradshawl! and led to proposals to have the effects of pressure-
dilatation correlation modeled in the governing equations!2. A more recent study where density
fluctuations are also considered has been given by Speziale and Sarkarl3. Besides these

modifications, all turbulent compressible flow modeling rely on incompressible models.



Two sources of difficulties arise when incompressible turbulence models are extended to
compressible flows. One is due to compressibility itself and another is associated with the
turbulence phenomena. In compressible flows, the governing equations are coupled and
temperature cannot be considered as a passive scalar. As a result, all other thermodynamic
variables adopt new roles. Therefore, mathematically, compressible flows cannot be considered as
straightforward extension of incompressible flows. Furthermore, pressure is only a force term in
incompressible flows and all disturbances propagate at infinite speed. On the other hand, pressure
also supports finite velocity propagation of disturbances in compressible flows. Other
complications come from the variable mean density, which contributes to increased non-linearity of
the governing equations, and the fluctuating density, which causes the closure problem to become

more difficult.

The second source of difficulties has to do with turbulence mixing. Here, even for
incompressible flows, many problems remain to be resolved!4-17, especially when the flow is
unsteady and/or three-dimensional!8. However, among the many problems associated with
turbulence modeling, one stands out as most fundamental and urgently needs attention. This is the
treatment of the near-wall flowl?. Conventional approach is to invoke the wall function
assumptions; thus implying that near-wall turbulence is in local equilibrium. Even for simple wall
shear flows, the assumption is not quite valid because near-wall turbulence is not in local
equilibrium. Consequently, a low-Reynolds-number treatment is necessary in order to obtain
results that agree with measurements in the near-wall region!7-19-21. The need for near-wall
treatment of flows with heat and mass transfer has also been pointed out?2-25, This problem is
expected to be more acute in compressible flow modeling!3 where the non-linearity of the

governing equations are further compounded by the variable mean density.

The present objective is to model near-wall compressible turbulent flows where the

coupling between velocity and temperature cannot be ignored. As a first attempt, only the



modeling of the turbulent kinetic energy and its dissipation-rate equations is considered. With the
assumption of gradient transport, the two-equation model could be used to effect closure of the
mean flow equations. Since the transport equations for the heat fluxes and the temperature
dissipation rate are not modeled and solved, a constant turbulent Prandtl number is invoked to
relate the heat fluxes to the momentum fluxes. In view of this assumption, the present approach
only addresses the issue of compressibility effects on turbulent mixing and not on heat transfer and
its interaction with turbulence. An attempt on this latter problem will be made after the present

model has been validated.



2. Proposed Modeling Approach

With the availability of near-wall models for temperature variance and its dissipation rate24,
heat fluxes25, Reynolds-stresses26 and the dissipation rate of the turbulent kinetic energy?’, the
time is now ripe for their extension to compressible flows. In order to consider the effects of
variable mean density and its fluctuation on turbulence mixing, it is necessary to analyse the exact
equations and propose appropriate models to effect closure. Two approaches are available. One is
to propose totally new models for the terms in the compressible equations, while another is to
attempt to extend the incompressible models to compressible flows in a credible way. Both
approaches involve assumptions that could or could not be verified experimentally. Since the
present knowledge of incompressible flow modeling is quite mature, as a first attempt, it is
expedient to extend these models to compressible flows. This can be accomplished by recasting
the compressible equations in forms similar to their incompressible counterparts so that terms with
explicit dependence on compressibility effects can be isolated separately, and the incompressible

limit can be recovered in a straight forward and correct manner.

Since the turbulent kinetic energy equation or k-equation is obtained by contracting the
Reynolds-stress equations, this means that the recasting of the Reynolds-stress equations should
be attempted first. In other words, the viscous diffusion and dissipation terms in the Reynolds-
stress equations have to be similarly defined as their incompressible counterparts. This suggests
splitting the viscous dissipation function into a solenoidal part, which is not sensitive to changes of
compressibility indicators, and a dilatational part, which is directly affected by these changes28.
When the Reynolds-stress equations are written in this form, three additional terms that depend
explicitly on compressibility effects are present. The k-equation is then obtained by contracting the
Reynolds-stress equations and its incompressible counterpart is recovered correctly when density
becomes constant and the additional terms vanish identically. An equation that governs the

transport of the solenoidal dissipation rate (€) of the turbulent kinetic energy (k) is derived and



modeled along the line suggested above. Again, additional terms that depend explicitly on
compressibility effects appear in the equation. This equation also reduces correctly to its modeled
incompressible counterpart because the additional terms vanish for constant density flows. All
models proposed for the k and € equations are expressed in terms of this solenoidal dissipation
rate. A model with explicit dependence on the turbulent Mach number proposed by Sarkar et al.28
for the dilatational dissipation is adopted. Thus formulated, the two-equation model is valid for
compressible flows and approaches its incompressible limit in a straight forward and correct

manner.

The systematic approach described above, if proven successful, could be used to extend
incompressible near-wall models for heat-fluxes, temperature variance and its dissipation rate to
compressible flows. A set of equations governing the transport of incompressible heat fluxes has
been proposed and validated against simple flows with heat transfer25, while a similar sct of
equations for the temperature variance and its dissipation rate24 has also been validated aguinst
boundary-layer flows. This means that near-wall heat transfer models could also be extended to
compressible flows using the approach proposed above. Until such time, the assumption of a

constant turbulent Prandtl number for near-wall compressible flow is inevitable.

In the following, the compressible equations are first derived, then the near-wall modeling
of the k and € equations are discussed. In section 6, the two-equation model is used to calculate
compressible boundary layers on a flat plate assuming a constant turbulent Prandtl number. The
calculations are carried out for a range of free-stream Mach number and two different wall thermal
boundary conditions. Comparisons with measurements%.29-31 and other calculations, such as
those obtained using the k-® model of Wilcox8, are carried out to assess the importance of density

fluctuations on the calculated results and, hence, the validity and extent of Morkovin's hypothesis.



3. Mean Flow Equations

The compressible mean flow equations are obtained by applying Favre averaging to the
instantaneous Navier-Stokes equations which for Newtonian fluids can be written as:

op 2

-a-t—+a—Xi(pu;)=0 , ()
a._u._<c,,)—-4 ool
where Tij = 3—27 * g:, 4 g;k % ®

u; is the i component of the velocity vector, x; is the ith component of the coordinates and p, T,
P, M, X, C,, are pressure, temperature, density, viscosity, thermal conductivity and specific heat at
constant pressure, respectively. Favre decomposition is applied to all variables except p and p

where conventional Reynolds decomposition is assumed. In other words

u=(U +u; )
T=(®)+0" , (6)
p=P +p’ , )
p=p +p° , ®

where u; and 8” are the Favre fluctuations and p’ and p are the Reynolds fluctuations. If <> is
used to denote Favre-averaged quantities and the overbar the Reynolds-averaged quantities, then
the mean equations for compressible flows can be obtained as follows. The above decompositions
(5)-(8) are substituted into (1)-(4) and the resultant equations are averaged over time. If the

turbulent flow is further assumed to be stationary and the mean momentum equation and the



Reynolds-stress and turbulent kinetic energy, k = %(u:u:), equations to be derived later are used to

simplify the thermal energy equation, the turbulent mean flow equations become

ga;i(ﬂUD) =0, 9)
.
2 (o) =- -+ 2582 2 g ez (10)

9% (P<Un>[c K + XUUp +k]) = 3_(—%@)

+ 3—(<ru>(U,)) ax (p Cp(8"y )) (p (u u, )(U,))

*a_y?;(”» 9 (p(ku)ﬁ (:_r_)+—(' )+ ax,( ax.) : (1)

In these equations, L =}, k = X and C; = (_Z-p have been substituted and the mean and fluctuating

stresses are given by

5 AU

o{U)  U; —
(T)U-(<l) <J>)%uua—xk-,

0X; 0x;

The quantity, Ep(e) + %(Uk)(Uk) + k, is the mean total enthalpy (H). Thus written, (9)-(11)

reduce to their incompressible counterparts exactly when density becomes constant.

An order-of-magnitude analysis is carried out on (9) - (11). The result shows that the
underlined terms are of smaller order and, as a first approximation, could be neglected compared to
the terms retained. Thus formulated, the compressible equations are identical to the incompressible

equations and the additional unknowns are the turbulent momentum and heat fluxes, just as in the



incompressible case. The present approach proposes to close these equations assuming gracient
transport. As a first attempt, a near-wall two-equation k-€ model is used to determine the turbulent
viscosity and a constant turbulent Prandtl number is invoked to relate turbulent momentum and heat
fluxes. Therefore, the present model cannot fully account for the effects of density fluctuation on

turbulent heat transfer.



4. Modeling of the Turbulent Kinetic Energy Equation

The Favre-averaged transport equation for the Reynolds stresses E(u;u;) could be similarly
derived as in the incompressible casel6, That is, the ith fluctuating velocity equation is obtained by
subtracting the mean momentum equation from the instantaneous equation. Repeat the same
procedure to obtain the jth fluctuating velocity equation. The ith fluctuating velocity equation is
then multplied by the jth fluctuation velocity and vice versa and the two equations are then added

together and averaged over ime. Omitting all the algebra, the final exact equation is:

2[pei] e 2 [pwo @] = 2[5 ] s vl vy

Low .oaul| [ - | -3p { ;U aam]
-1 —1i et 4 bt L
Tik Xy T Tk ij Y ox; Y axj pu 1““) Xy P ( i k) ox
“9F 0P| | | aa,k)}
RRETEE *{“' e | am (12)
Symbolically, the above equation can be written as
=DI w5t . . . .
CU-DU+Di‘}-peij+<I>U+PU+GU+TU . (13)

With the exception of Gjj and Tj;, (13) is similar to its incompressible counterpart?6. For an

incompressible flow, u: =0, and Gij = Tij = 0. Even under this condition, (13) fails to reduce

properly to the incompressible equation given in Ref. 26. The reason lies in the grouping of the

terms (DlJ - Eeu + <Dij} In order to achieve this incompressible limit correctly, a re-arranging of

the terms in (DU - Ee,l + d)ij} is necessary. If viscous diffusion and dissipation in compressible

flows are again defined similarly to their incompressible counterparts, or

. 9 ( au: u')
D= \* oxe | (14)




Fi= <Y xan (15)
then the terms (D;j" - Esfj + d’ij’ can be re-arranged to give

D;jV-ﬁe;j +®; =D;j -PE;- PE;+ DT (16)

—lau au du au )
c_V Y i 9%
where €] 3 ( ax; I + o x| (17a)

a | -ou .au') 3 -du. op -du.
4 ly—k k| 2% k% O Tk
+ (u. Ix. + u. an u, an +axi Uj BXk . (17b)
Note that (16) reduces to its incompressible counterpart exactly when constant fluid properties are
assumed. For compressible flows, an extra term Fafj appears in (16). In addition, three
additional terms are found in <I>l'J The term b'efj is a dilatational term and could be interpreted as

compressible or dilatational dissipation. This term is only important for compressible flows.

It should be pointed out that Q;j is given by (17b) and, as a result of this particular
partitioning, there are several extra terms resulted from compressibility and variable viscosity.
However, at high Reynolds number, dimensional arguments reveal that these extra contributions
are not important. If pressure diffusion is further neglected, then DE p&jjand <Di.j would assume
the same form as their incompressible counterparts. Therefore, the high-Reynolds-number
incompressible models proposed for these terms!6.32 could be straight-forwardly extended to
compressible flows. However, a model for the compressible dissipation term He‘fj is required to
complete closure. For high-Reynolds-number flows, this compressible dissipation could be

assumed to be isotropic. As a result, the following model is proposed:

10



(18)

The modeling of €° has been attempted by Sarkar et al.28 They are the first to realize that the
contribution of the dilatational dissipation term is important for supersonic shear flows. A simple
algebraic model, which is based on an asymptotic analysis and a direct numerical simulation of the

simplified governing equations, has been proposed for €°. Their proposal could be modified to

become
&€= Me , (19)
T\2
— —|ou
where o is a model constant, M? = 2k/C 2, pe = L {=—L| is the dissipation of k and T is the local
axk

mean speed of sound. Therefore, M, is the local turbulent Mach number. It should be pointed out
that Sarkar et al.'s?8 definition of €€ is four times larger than the definition given in (19) as a result
of a different splitting of the terms in (16). Consequently, a; should take on a value equal to 1/4
of that suggested in Ref. 28. Based on an analysis of decay of compressible isotropic turbulence,
Sarkar et al.28 suggested a value of one for their constant. In other words, &) = 0.25. If «y is
evaluated based on compressible shear flows, its value would be 0.15. The present study adopts

op = 0.15 for the analyses of boundary-layer flows.

The k-equation is obtained by contracting (12) and making use of (16) and (18) to simplify

the resulting equation which can be written as:

1 1.+ 1_ 1 1 1
=Dj + Dy +5P;; + 5®ii - 3P € - 3P €5 + 5Gii + 3T - (20)

D(pk)
D
It can be seen that the terms, DI, ‘Di‘i and P €;;, and the coefficient, u:, appearing in Gj; and Tj;

require modeling. Furthermore, when p is assumed to be constant and u, = 0, the last three terms

11



in (20) are identically zero and the incompressible equation is recovered exactly. The modeling of

DE, ®;; and pg;; could be accomplished by drawing parallels with their incompressible

counterparts?6-27. However, this requires knowledge of their behavior in the near-wall region.

The near-wall behavior of (20) can be analysed by assuming Taylor series expansions about
the wall for the fluctuating quantities. This analysis is similar to the incompressible case26 except

that expansions also have to be assumed for p' and 8". The proposed expansions are:

u'=ajy+ayyl+..,
Vi=b y+byy+ .,
21)
w'=cpy+cyyi+ .,
8" =d;y+dyy2 +...,

pPr=ey+e,yl+ ..

It should be cautioned that, although the velocity and temperature expansions are physically
correct, the expansion for density is an assumption. As pointed out by Bradshawl!, the
fluctuating temperature and density could not go to zero simultaneously at the wall. Otherwise, it
would lead to a zero wall p”. In general, temperature fluctuation is assumed to be zero at the wall,
while p” is not. Here, the assumption is made that p’ also goes to zero at the wall, however, its
value away from the wall is finite. Since p’ is taken to be essentially zero over the whole field in
Morkovin's hypothesis!0, the present approach could be viewed as a partial relaxation of that
assumption. Consequently, the proposed model would not be valid for all free-stream Mach
number and wall thermal boundary conditions. Therefore, one of the present objective is to

analyse the validity and extent of the proposed two-equation model.

For incompressible flows, b; = 0 is obtained by imposing the incompressibility condition
and becomes a crucial condition in near-wall analysis. This important condition holds the key to

the present extension of the near-wall incompressible models to compressible flows. In order to

12



show that b} indeed vanishes under these conditions, the continuity equation for p' is first derived,

or

a ' a —_" ’ . "
a‘:+§k(puk+p<Uk)+puk]=0. (22)

Expansions (21) are then substituted into the above equation. If {Uy) =0 at the wall is used, it can
be easily verified that, under the assumption of (21), by = 0 is still a valid condition for
compressible flows, irrespective of the thermal boundary condition. Therefore, the assumed p’
expansion facilitates the modeling of compressible flows, because all terms in (20) have similar

forms as their incompressible counterparts except the extra £f; term which needs to be analyzed.

Using definition (18) for €, it is easily verified that € is of order y2. The high-Reynolds-
number model (19) also has similar behavior near a wall. Therefore, it is proposed to extend (19)
to near-wall flow without modification, while the near-wall balance provided by the exact €}; is
taken into consideration by combining it with the d’i‘i term. As for pg;;, it could be modeled by
following the arguments presented in Refs. 26 and 27 for incompressible flows. In essence, Refs.
26 and 27 argue that the incompressible €;; can be set equal to 2€ and the near-wall corrections
proposed for €;; have little or no effects on the behavior of €j; in the region near a wall. This means
that €;; in the near-wall region as well as the region away from the wall can be approximated by 2e.
In view of this, the model for p &;; can be assumed to be given by 2p €. Based on this model,
equation (15) and expansions (21), it can be easily shown that the leading term of € in the near-wall
region is a constant equal to its wall value €,,. Again, the behavior is similar to the incompressible

case.

Near-wall analysis again shows that turbulent diffusion is a higher order term and its high-
Reynolds-number model could be adopted because it does not affect near-wall balance of the k-
equation. Consistent with the assumption of gradient transport for two-equation models, the

incompressible model for turbulent diffusion of k is extended to compressible flows by writing D:'

13



= J((1 /oR)ok/ox;)/dx;, where Oy is a constant and [ is the turbulent viscosity defined by JT, =
Cufuﬁkzle. In this definition, C, is a model constant while fy, is a damping function to be defined
later. Based on (21), the leading order term of k in the near-wall region is y2. Since € = ¢, in this
region, k2/e has to be of order y4. If the shear stress is defined with respect to M, then it can be
shown that the leading order term of the shear stress has to be of order y3 in the near-wall region.
Therefore, it follows that V|, = I /p is also of order y3 near a wall and this, in turn, leads to a
similar behavior for the modeled DE term in the near-wall region. This behavior is consistent with
the behavior of the exact term DE appearing in (20). In other words, the modeled DI does not

affect the near-wall balance of (20).

According to (18), £ = 26, As such, the near-wall behavior of the exact €} is not properly
accounted for by the proposed model. In the above discussion, it is argued that the near-wall
behavior of €f; could be modeled together with the term <I>;1 In order to analyse the near-wall
behavior of the combined term (<I>;i + Pe), the behavior of G;; and Tj; near a wall has to be
studied. The appearance of mean pressure in G;; makes the analysis slightly more difficult.
However, the difficulty could be circumvented by making use of the mean momentum equation
(10). The final analysis shows that the combined (G + T;;) term has the following near-wall

behavior; namely,
Gy + Ti1 = OG2) ; Gz + T35 = O(¥2) ; Gop + Ty = O(¥3) . (23)

This means that, to the lowest order, the near-wall behavior of (d’i‘i + P is similar to its
incompressible counterpart26. For incompressible flows, the term, 05, can be written into a
pressure diffusion part and a pressure redistribution part. Pressure redistribution is identically zero
and since pressure diffusion is relatively small, it is usually neglected. Such is not the case for
compressible flows. The term, ‘Di‘i’ can again be partition into a pressure diffusion part, which
could be neglected, and a term involving pressure-velocity-gradient correlation. This latter term

does not vanish because fluid volume changes as a result of density variation. Therefore, an

14



argument could be made to model the term, (<I>;- + P &), to account for dilatational effects only. In
view of this, the following model is proposed, or

« ¢ — . [9{U;
(@i +pED= -Yp k(-%) , (24)

where 7y is a model constant.

The proposed models still fail to close the k-equation because of the presence of u: in T;; and

G;;. Therefore, it is necessary to shed some light on the modeling of u:, which is identically zero

for incompressible flows. Using Favre averaging, it can be shown that -p'u: = Eu: . In other

words, v, = - p’u, /p. Previous proposals for -p’u, are based on the gradient transport

assumption; namely,

pw =N P (25)
Cp

where G, is a model constant. However, a more elaborate way to model the term is to adopt the

proposal,

- A (26)

where Cp is a model constant. Alternatively, the term can also be modeled by

v =g ms=-(iﬁ_) o,

¥e)), P @n

where  equals to unity for an ideal gas.

The near-wall behavior of the modeled k-equation can now be analysed using expansions

(21). Tt can be easily shown that in the region very near a wall, the modeled k-equation is in

15



balance up to order y. Consequently, it does not need further modifications to achieve a consistent

asymptotic behavior near a wall.

16



S. Modelling of the Dissipation-Rate Equation

The exact transport equation for the solenoidal dissipation rate (p €) can be similarly derived
as in the Reynolds-stress equation (12). If the approach of the previous section is adopted, the

various terms in the equation can be grouped into terms that are essentially similar to their

incompressible counterparts!6. Therefore, this derivation will give an €-equation similar to the

incompressible equation but with three additional terms involving u: and |. If these three terms

are denoted by S¢p, S¢p and Sg3, the exact compressible equation for p € can be written as:

Dpe - 0 [dpe i{— e
F'Vﬁ(a)'axk p(uke)+2va)(i ox;

- 3qUp | du; duy, du, du
B &faxf G axk>

Uy -, du du du,
. _L _x._k
29V<uk %, 2pv<8xk8 3,
-5 o2, 3%,
-2v —+S€1+S€2+Sg3

0Xg OX;j OXOX; (28)

The term Sg3 is too cumbersome to write out in full. It is related to the gradient of V' and u:
and is very much like the extra terms in (17). On the other hand, the terms Sg; and Sg are given

by

.I

ou. 2P _du, du; ¥r;)
Se1=- 2v 5)?:8)(@)(, and Sg= 2v— Xy axkaxj (29)

These terms are not only related to the gradient of u: but they are also functions of the gradients of
mean pressure and mean viscous stresses. They are like the terms G;; and Tj; in the k-equation and

are explicitly dependent on compressibility effects. Therefore, S¢ and S¢p have to be modeled

17



separately32 just as in the case of the k-equation. The term S,3 can be grouped with the other

terms that need modeling and treated in a manner similar to that in the k-equation.

It has been pointed out that the e-equation is the most difficult to model even for
incompressible flows!3.16.17.26,27.32  The reason being that many of the terms in the exact

equation are either not known or could not be measured accurately at present. Consequently, the
incompressible e-equation is modeled in an ad hoc manner to resemble the k-equation in forn so
that the right hand side of the €-equation again consists of four terms; namely, viscous diffusion,
turbulent diffusion, production and destruction of €. The equation is further modified for near-wall
flows by adding an extra destruction term & so that the modeled equation remains balance as a wall

is approached. There is a lack of measurements in compressible flows, therefore, a rigorous

modeling of the compressible e-equation is not possible at present. An alternative is to extend the

high-Reynolds-number incompressible models to compressible flows and then seek a near-wall

correction to the modeled e-equation along the line suggested in Ref. 27. In view of this, (28) is
not a convenient form to work with. The proposal by Speziale and Sarkar!3 with the dilatational

effects written out explicitly will be more appropriate.

Following Speziale and Sarkar!3, the modeled transport equation for € with a near-wall

correction is written in the simplified form; namely

Nl e +Dg+pz-A£-§ae@+§, (30)
Xi

where Dé is the turbulent transport of €, Py is the production of € due to deviatoric strains, A is
the destruction of € and § is a near-wall correction for compressible flows. The second last term
on the right hand side of (30) is exact and results from the writing of (28) into the form of (30).
When the dissipation-rate equation is formulated in this form, it is reducible exactly to its

incompressible counterpart and, therefore, the terms D}, P, and A can be modeled by a variable
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density extension of their incompressible models. Following the suggestions of Refs. 13 and 27,

the models proposed for D, P, and A, are:

_ 9 [0 '
Dle_a‘x_i(ceaxi)' (31a)

P Y A DI . S
PE Ce]pk <uluj>( ax] 3 BXk 81_) ’ (31b)
8¢ = CopE., 31c)

where the model constants Cg1 and Cg are the same as those given in Ref. 27 for incompressible
flows and € =€ - €,,. It should be noted that the mean dilatational effects are accounted for exactly
by (31b) for compressible flows and that these models reduce exactly to their incompressible
counterparts when the flow Mach number becomes very small. In addition, the ordering of these
model terms is similar to their incompressible counterparts. Therefore, the near-wall function §

can be determined in a manner similar to that used in Ref. 27.

The incompressible form of (30) with model terms given in (31) is identical to that proposed
in Refs. 26 and 27. In these studies, the coincidence condition suggested by Shima2! was used to
determine &. This is equivalent to requiring the modeled €-equation to achieve balance behavior in
the near-wall region at least up to order y. The approach used to deduce & is to assumed a
functional form for & with two undetermined model constants. One of the constant can be
determined from near-wall analysis, while the other is evaluated using computer optimization. The
€ function thus determined has been used in Ref. 27 to calculate flat plate boundary-layer flows
and in Ref. 26 to calculate fully-developed channel and pipe flows. These calculations were
carried out over a wide range of flow Reynolds number. The results were compared with direct
simulation data as well as measurements. Very good agreement has been found for both the

limiting behavior of the turbulence quantities and € when compared to direct simulation data33-35.
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Furthermore, the two-equation model calculations of Ref. 27 are found to give better results than

those obtained by Speziale et al.36 In view of this success, the same approach can be used to

determine & for compressible flows.

The functional form assumed in Ref. 27 is adopted here, or
€€ g"2
S=fy2p | N+ M < (32)

where £, ; is a damping function that goes to one at the wall and zero far away from the wall. Itis
defined in Ref. 27 as f,, 5 = e RY64? where R, = k%/Ve is the turbulent Reynolds number. The
function €” is defined as €” = € - 2Vk/y2 by generalizing the incompressible definition used in Ref.
27. Similarly, € is defined with &,, specified by €, = ZV(NE/axjﬁ. Once & is postulated, the
near-wall behavior of (30) and the modeled terms of (31) can be analysed using expansions (21).
If the modeled equation is again required to be in balance up to order y, then it can be easily shown
that N = 2 - C;; because the mean dilatational terms are of order y. Therefore, to order y© they do
not contribute to §. In Ref. 27, the part involving Cgj in N is grouped together with M to give M,
= (ngei-:"/t—:‘2 + M) and its value is determined through computer optimization studies. Again, the

same procedure is followed in the present study to determine M;.

Finally, to complete closure of the governing equations, gradient transport is assumed for

the Reynolds stresses and the relation is given by

)7 | 20 20 25,20 25

dx; 9x; 3 ax

In addition, a constant turbulent Prandtl number is assumed so that heat and momentum diffusivity
can be related by Pr; = v /&; where @, is the turbulent thermal diffusivity. The damping function
f,, appearing in the definition of i ; can now be defined. In view of the similarity of the present k
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and € equations with those for incompressible flows, the f;; used in Ref. 27 is adopted here. It is

defined as

fu=(1+3.45/VR;) anh (y*/115) , (34)

where y* = yu,/v is the wall coordinate and u(x) is the friction velocity. In this definition, y is

taken to be the normal coordinate and x the stream coordinate.
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6. Model Validation

A first step to validate the two-equation model for compressible flows is to apply it to
calculate flat plate boundary-layer flows with different wall boundary conditions and free-stream
Mach numbers. In this initial attempt, heat flux is not modeled separately. Instead, it is related to
momentum flux via the assumption of a constant turbulent Prandtl number. The rationale for doing
this is to carefully assess the assumption made in (21) concerning the expansion for p’, whose
validity affects the near-wall analysis used to justify the direct extension of the incompressible
near-wall function § to compressible flows. By choosing the simplest type of compressible flows
to validate the model, a careful analysis of the validity and extent of the expansion for p' can be
carried out. A second objective of this validation is to determine, if possible, the validity and
extent of Morkovin's hypothesis. In other words, it is hoped to evaluate the Mach number runge
and the type of wall thermal boundary conditions in which the effects of fluctuating density can be
neglected in the modeling of the governing equations. Therefore, the experimental data chosen for
comparisons are selected from three different groups; one with adiabatic wall boundary condition
and varying free-stream Mach number, another with constant wall temperature and varying free-
stream Mach number, and finally the variations of skin friction with free-stream Mach number and
wall temperature as prescribed by the van Driest II formulae given in Ref. 9. The data for the first
two groups are selected from Ref. 31. They are cases 55010504, 53011302 and 73050504 with
adiabatic wall boundary condition and case 59020105 with constant wall temperature. The free-
stream Mach number (M,_) for these cases are 2.244, 4.544, 10.31 and 5.29, respectively. Only
one case with constant wall temperature is selected. The reasons being that the other cases reported
in Ref. 31 are either not accurate as far as the measured skin friction is concerned or the

measurements of the mean velocity and temperature are doubtful.

In the following, the governing equations for compressible flat plate boundary-layer flows

are first presented. Then the calculations and comparisons with data are examined and the validity
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of the two-equation model is studied in detail. Finally, the model performance and its proposed

improvement are discussed.

6.1  Governing Equations

Two-dimensional, steady compressible boundary layers on a flat plate are considered. If the
usual boundary-layer approximations are made, then governing equations (9) - (11), (20) and (30)
can be substantially simplified. For the sake of completeness, the boundary-layer equations in

Cartesian x-y coordinates are listed here as:

wlpw)+slbw) =0, (35)
X0, a<U> 3=, = AW

p Uy === +p{V) = ay( +Ht)‘§;-} ) (36)
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In writing down these equations, (33) has been used to relate the shear stress to the mean velocity
gradient. It is also noted that G;; is zero for flat plate boundary-layer flows while the only term of

importance in Tj; is that given by u". If (25) is used to evaluate u", then Tj; is of order y2 and is
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not important in the near-wall region, which according to So et al.27 is bounded by 0 S y* < 5.
The model constants are taken from Refs. 27 and 32 and are given by: C, =0.096, C; = 1.5, C;
=1.83, 0 =0.75, 0, = 1.45, & = 0.15, 6, = 0.5 and Y = 0.182. The turbulent Prandtl number
Pry is specified as 0.9, while Pr is assumed constant and taken to be 0.74. Sutherland and power
laws are used to evaluate fluid viscosity at an appropriate reference temperature. The constants S
and o] are determined by calibrating the calculated results against some classic experiments such as
those provided in Refs. 29 and 30. Once determined, they are kept constant for all other
calculations. In fact, the cases to be compared in the next section are different from the cases used
to calibrate G and ;. As for N and M,, the final choice of values adopted are 2 and 1.5,

respectively, just as in the case of incompressible flows.

The boundary conditions are no slip at the wall for the mean velocities and k, and zero heat
flux or constant wall temperature at the wall for the enthalpy. As for the dissipation rate, its value
at the wall is given by 2v (aﬂE/ay)i. At the edge of the boundary layer, the free-stream conditions
are specified for both the mean stream velocity and the enthalpy. In principle, the turbulence
quantities, k and €, should be zero in the free stream. However, in practice, they are assumed to
take on some very small values, of the order of 10-7, in the free stream. Thus formulated, the
above equations and the appropriate boundary conditions can be solved numerically using the

boundary-layer code developed by Anderson and Lewis30 and modified by So et al.27.

All measurements used to validate the near-wall two-equation model are drawn from Ref.
31. The calculations are carried out over the range, 0 < M, < 10, for adiabatic wall boundary
condition and over the range, 0 < 8,,/8, < 1, for constant wall temperature condition. Here, ©,, is
the wall temperature and ©) is the recovery temperature. It should be pointed out that 8,/6, = 1.0
corresponds to adiabatic wall boundary condition while ©,/8, < 1 indicates that the wall is cooled.
Since only mean flow properties are available from Ref. 31, comparisons are made with these
measured quantities and another set of calculations using the k-@ model of Wilcox8. All

comparisons are made at the same momentum thickness Reynolds number (Rg) as the
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measurements. The variations of skin friction with M, and ©,,/0, are compared with the van
Driest II formulae reported in Ref. 9. In these comparisons, the calculations are carried out at a
fixed Ry as specified in Ref. 9. Finally, an assessment of the effects of compressibility on near-
wall flows is attempted by comparing the near-wall behavior of the calculated turbulence statistics

for the different cases investigated.

6.2 Comparisons with Data

The results are organized in the following manner for presentation. Mean stream velocities
are normalized by u; to give u* and they are plotted versus In y; (Fig. 1), where y:, is defined as
uy/Vy. On the other hand, mean temperatures are normaljzed by O, the free-stream
temperature, and are shown versus y/d (Fig. 2),where 8 is the boundary layer thickness defined as
the location of y in which <U>/U,, = 1.0 as specified by the measurements. Here, U, is the tree-
stream velocity. Plots for the turbulence properties, k* = k/u% ,E¥ =¢ V/ug , -uv*
= -F//ut2 and -8v+ = -Qv/U_O,,, are presented in terms of yy, and y/8. Near-wall behavior of k*,
g+, -uv+ and -Ov* (Figs. 3 - 6) are discussed first, then the distributions of k+ and -Gv* versus y/5
(Figs. 7 and 8) are examined. In Figs 7 and 8, & is not interpreted from measurements; rather it is
evaluated at the y location where <U>/U, = 0.9974. Only the budget of k in the near-wall region
for case 73050504 (M, = 10.31 and ©,/0, = 1.0) is presented (Fig. 9) because the k budgets for
the other cases are essentially similar to that for case 73050504. The effects of Mach number on
the asymptotic behavior of k are examined by plotting ay versus M, (Fig. 10), where ay is the
leading coefficient in the expansion of k* in terms of y;. According to Ref. 27, €}, = 2a;.
Therefore, by examining the behavior of a, versus M,,, the variation of &}, with Mach number is
also evident. Other asymptotic properties are tabulated in Table 1 for comparison. The effects of
Reynolds number on the calculated results are also investigated for the cases 53011302 and
59020105 (Figs. 11 and 12). Finally, the effects of M, on the skin friction coefficient, C¢ =
2t./p “Ui, is compared in Fig. 13 with the van Driest II resultd for adiabatic wall boundary
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condition. As for the case of Cg versus ©,,/0, for a constant M., the results are listed in Table 2

for comparison with the van Driest II data obtained from Ref. 9.

Two versions of the present k-€ model are used to calculate the boundary-layer flows. One
designated k-€ model/1 solves the k and € transport equations as given in (38) and (39). The
second designated k-€ model/2 solves (38) and (39) with all additional compressible terms
neglected. In other words, the two-equation model for k-€ model/2 is a direct variable density
extension of the two-equation incompressible model of Ref. 27. These calculations can be used to
evaluate the validity and extent of Morkovin's hypothesis and the importance of having an

asymptotically consistent near-wall correction for two-equation models.

Four sets of u* results are shown in Figs. 1a - 1d. Also shown in the figures are the

calculated and measured Cs and the C¢ determined from the van Driest II formula of Ref. 9. The
log-law is shown in Fig. 1a to illustrate the log region of the calculated and measured flows. It can
be seen that Cy is predicted correctly by all three models with a maximum error of less than 5%.
For the cooled wall case, the measured Cy is substantially higher than the van Driest II value and,
according to Ref. 31, it is not as accurate as the measured Cg for the other cases studied. The
model calculations are in good agreement with the van Driest II value for this case. Calculated u*
profiles from k-€ model/1 and k-€ model/2 correlate well with measurements, even for the M., =
10.31 case (Fig. 1c). This means that the present k-€ models are quite valid for compressible
flows up to M,, = 10. The models represent improvements over existing models whose
predictions are correct only for M, < 5 (see e.g. Ref. 37). Since most existing models are direct
variable density extensions of conventional near-wall two-equation incompressible models and
most of these incompressible models do not have an asymptotically consistent near-wall correction,
the discrepancies display by these models for M, > S is understandable. Present results show
that, if the near-wall correction is asymptotically consistent, the incompressible models can be

straight-forwardly extended to compressible flows with a free-stream Mach number as high as 10.
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It seems that k-€ model/2 gives a better correlation with velocity measurements (Figs. 1¢ and
1d) and thereby suggests that the additional compressible terms in (38) and (39) are not important.
However, an examination of the mean temperature results tends not to support this conclusion.
Further evidence that an asymptotically consistent near-wall correction is important can be gleaned
from the predictions of the k-w model. As M, increases, the discrepancies between predictions
and measurements also increase. For low M, the slope of the predicted log-law as calculated by
the k-® model is about the same as the slope of the log-law shown in Fig. 1a. However. the
predicted slope increases as M, increases. The same is also true for the cooled wall case where the
u* profile is not shown in Fig. 1d but is shown in Fig. 12a when the effect of Reynolds number
are analysed. This behavior is not observed in both the k-€ model/1 and k-e model/2 predictions,

however.

The mean temperature profile comparisons are shown in Figs. 2a - 2d. As expected,
predictions by the k-w model compare less favorably with measurements. Here again, the
predictions of the k-w model are shown in Fig. 12b rather than in Fig. 2d. This is even truc for
low free-stream Mach number (Fig. 2a). As M,, increases, discrepancies between measurements
and k-w predictions also increase. On the other hand, the agreement between the k-€ model/1
predictions and data improves as M,, increases. This is not true for k-€ model/2 where the
disagreement with data is quite substantial at M_, = 10.31 (Fig. 2c). The predictions of the cooled
wall case (Fig. 2d) tell a different story. It seems that k-€ model/2 gives an overall better prediction
of the cooled wall case compared to that of k-€ model/1 (Figs. 1d and 2d). The following three
reasons could be put forward to explain this behavior. Firstly, the p' expansion may not be totally
valid for constant wall temperature boundary condition. Secondly, the proposed compressible
models may be more applicable for adiabatic wall boundary condition. Thirdly, the assumption of

a constant turbulent Prandtl number may not be correct.
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The near-wall distributions of k* for the four cases are shown in Figs. 3a - 3d. Only the
predictions of the k-&€ model/1 and k-w model are compared. The calculations of k-€ model/2 are
not shown; instead, the limiting behavior of k+, -uv* and -8v+ is tabulated in Table 1 for
comparison. In general, the predictions of the k- model are substantially lowered than those of
the k-€ model/1. The peaks are about 40% lower than those predicted by the k-€ model/1 and the
locations where the peaks occur are calculated to be further away from the wall than the k-€
model/1 predictions. According to the k-€ model/1 predictions, the peak of k* decreases as M,
increases. The decrease is more than 20% over a Mach number range of 10. On the other hand, a
slight cooling of the wall at an M, of 5.29 causes the peak of k* to decrease to the same level as
that for the case of adiabatic wall with M, = 10.31. These results suggest that wall cooling has
more influence on reducing turbulent mixing compared to compressibility effects. Overall,
compressibility reduces turbulent mixing and the reduction increases with M,,. The near-wall
distributions of €* as calculated by k-€ model/1 are plotted in Figs. 4a - 4d. It can be seen that the
distributions are very similar to those shown in Ref. 27 for incompressible flows. The variations
of €, with M,, and ©,,/@, are very similar to those of k*. Again, maximum €* is found at the wall
and a plateau in €* is found in the range, 7 < y; < 13. This means that compressibility has little or

no effects on the near-wall behavior of e*. The exception is that increases in compressibility and

wall cooling tend to decrease €.

In general, the k-@ model gives a very accurate prediction of -uv* near a wall. Its
predictions are as good as those given by k-€ model/l (Figs. Sa - 5d). From this set of
predictions, the following observations can be made. Firstly, the peak of -uv*+ decreases with
increase M,, and decrease ©,,/6,. Secondly, as M, increases and ©,,/6, decreases, the location of
the peak moves towards the wall. Thirdly, the rate of decrease of -uv* in the range, 30 < y;, <
100, increases as M., increases. Finally, the asymptotic near-wall behavior of -uv* is listed in
Table 1 for comparison. Much the same behavior is also true for -8v+ whose distributions in the

near-wall region are shown in Figs. 6a - 6d. If the distributions of Bv+ are plotted instead of :0—\7'*,
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the curves will have the same shape as those shown for -uv*. Therefore, the observations drawn

for -uv* are also valid for v+,

The distributions of k+ and -uv* across the boundary layer are compared in Figs. 7 and 8§,
respectively. The results of the M,, = 10.31 case with adiabatic wall boundary condition are not
shown because k-® model prediction of this case has not been attempted due to the high free-
stream Mach number. In all cases shown, k-® model over-predicts k+ and -uv* in the outer part of
the boundary layer compared to the calculations of k-€ model/l. The over-prediction extends
across the range, 0.2 < y/8 < 1.0. This is further evidence that the k- model is not a suitable
model for compressible flat plate boundary-layer flows. Reduction of turbulence activities in the
outer part of the boundary layer is clearly evident when either compressibility or wall cooling
effects are present. The reduction increases as M,, increases. Therefore, it is expected that
turbulence activities will be substantially reduced in a flow where the free-stream Mach number is

large and the wall is highly cooled.

The near-wall k budget for case 73050504 is plotted in Fig. 9. Other budget plots are not
shown because they are essentially similar to that given in Fig. 9. It can be seen that the k budget
bears a lot of similarity with that calculated for incompressible flows (see e.g. Ref. 27). The
additional compressible terms have negligible effect on the near-wall k budget. Therefore, the
assumptions made to derive the near-wall function § in the dissipation rate equation are justified.
Again, viscous diffusion balances dissipation at the wall. This balance extends to about vy, =4
where turbulent diffusion and production become important. In the region, 4 < vy, S 15, viscous
and turbulent diffusions, production and dissipation are equally important. Beyond vy = 15,
production and dissipation are in balance, just as in the case of incompressible flows.
Consequently, the near-wall turbulence behavior is very similar for both incompressible and

compressible flows.

29



According to Refs. 25 and 27, Taylor series expansions about yy, = 0 can be assumex! for
k*, -uv* and “6v+. For incompressible flows, the expansions are valid up to about y; = 7. This
range may not be applicable for compressible flows. Nevertheless, such cxpansidns for small y;,

can still be assumed. With the help of (21) these expansions can be written as:

k* =ap(ys)? + b(ys)3 + . . (40a)
AV =ay (yE3 + by (54 + (10b)
Ov* = agg(yE)3 + byg(yi ) + e, (40¢)

where the a's and b's are time-average coefficients that are functions.of x. A similar expansion can
be deduced for €*. Again, using (21), the definition of € and its wall boundary condition, the

expansion for €* can be written as:
€ = 2ay + dbyyy, + . (41)

From these expansions, it can be easily deduced that k+2/e*(yy,)2 = 0.5. Therefore, the asymptotic
behavior of k*2/e*(y})? is 0.5 and is independent of M., and wall thermal boundary conditions.
The accuracy in which a model can predict this quantity is a reflection of the asymptotic
consistency of the model. Table 1 shows that k- model/1 is indeed asymptotically consistent

while k-€ model/2 is not as good.

The "a" coefficients can be determined from the calculations and their values are also listed
in Table 1 for comparison. It can be seen that ay varies with free-stream Mach number. A plot of
aj versus M,, for the adiabatic wall boundary condition is shown in Fig. 10. The value of aj, for
the incompressible case is taken from Ref. 27 and is plotted at M, = 0. Clearly, the trend is to
approach an asymptotic value for a at high M,,. This decrease in ay is a cause for the decrease in
k for high Mach number flows (Figs 3 and 7). The physical reason is that compressibility tends to

hinder turbulence mixing. As a result, both turbulent shear stress and kinetic energy decrcase
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significantly as M, increases (Figs. 3, 5, 7 and 8). Since e\: = 2a; according to (41), dissipation
at the wall is also dependent on M,,. There is no clear trend for a,, and ayg- However, the values
of a,, are consistent with that calculated for incompressible flows27 and direct simulation data35.
The value of a4 is essentially zero. Since there is no data available for verification, its correctness

is in doubt.

The inadequacy of the k-w model is further investigated by comparing its calculations with
cases where the free-stream Mach number is about 5 or less. These calculations are carried out to
evaluate the applicability of the k-t model at low Rg. The Ry for cases 53011302 and 59020105
are 5532 and 3936, respectively. Case 53011302 has adiabatic wall boundary condition and M_, =
4.544 while case 59020105 has constant wall temperature and M_, = 5.29. These Reynolds
number may be too low for the k-w model because it is not specifically formulated for low
Reynolds-number flows. In order to substantiate this point, the k-o model is used to calculate case
53011302 up to an Ry = 14,950 and case 59020105 up to an Ry =14,000. These results and the
calculations carried out to the measured Ry's are plotted in Figs. 11 and 12 for comparison. The
log-law is also shown in Fig. 11 to illustrate the calculated log behavior of the compressible
boundary layers. It is evident that the k-w model performs better at high Rg and the calculated log
behavior moves closer to that of the log-law (Fig. 11). The discrepancy between model
calculations and measurements is decreased substantially when Ry is increased by a factor of about
three. For the cooled wall case, even though there is improvement, it is not enough to bring the
calculations to a closer agreement with measurements. There is still significant difference between
this calculation and that due to k-e model/1 (compare Fig. 1d with Fig. 12a). However, there is

little or no improvement in the prediction of mean temperature (compare Fig. 2d with Fig. 12b).

Finally, the ability of the k-& models to predict skin friction coefficient over a range of M,
and wall temperatures is illustrated in Fig. 13 and Table 2. In Fig. 13, the variation of Ci/(Cp);
with M, for the case of adiabatic wall boundary condition is shown. Here, (C¢); is the skin

friction coefficient for an incompressible flow evaluated at the same Rg and is determined to be
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2.73 x 10-3. The calculations shown are from k-€ model/l. Below M, =5, the calculated k-¢
model/2 variation of C¢/(Cy); with M, is essentially the same as that shown in the figure. There is
a slight decrease of 1 - 2% for M,, beyond 5. This means that both k-€ model/1 and k-& moclel/2
predict the same Cy/(Cy); variation with M, for adiabatic wall boundary condition. The predictions
for the cooled wall case are not as good (Table 2). Here, substantial error starts to accumulate at a
temperature ratio of about ®,,/@, = 0.6. The error at this point is about 3% but it quickly grows to
about 9% at ©/6; = 0.4 and becomes even larger as ©,,/0, decreases. This trend is contrary to
previous calculations!3. The disagreement could be attributed to the assumption of a constant
turbulent Prandtl number. If Pr, = 0.7 is assumed, the calculations are in better agreement with
data up to ©,,/0, = 0.4, but beyond this point significant error in prediction still exists. The reason
could be a reduction of turbulent mixing as a result of a cooled wall. However, this effect has not
been appropriately accounted for in the models, particularly their near-wall behavior. In other
words, if highly cooled-wall flows are to be predicted correctly, heat fluxes should be modeled

separately rather than linking to momentum fluxes via a constant turbulent Prandtl number.

6.3 Discussion

The following observations can be drawn from the above analysis. Firstly, Morkovin's
hypothesis is valid up to a free-stream Mach number of about S for flat plate boundary-layer flows
with adiabatic wall boundary condition. This means that the effects of fluctuating density are
becoming more and more important as M,, increases beyond 5. Secondly, the assumption of a
constant turbulent Prandtl number is not appropriate for cooled wall thermal boundary condition.
The reason is the reduction in mixing due to a cooled wall and this effect is not correctly accounted
for in a constant turbulent Prandtl number approach. Most likely a heat flux model is required if
the characteristics of cooled-wall compressible boundary-layer flows are to be predicted correctly.
Thirdly, it is important to model the near-wall flow correctly if the overall boundary-layer
characteristics are to be predicted with confidence. The failings of the k- model can be attributed

to the asymptotically inconsistent near-wall corrections implemented into the governing equations.
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This point is substantiated by the present k-€ model calculations where all additional compressible
terms in the turbulence equations are neglected. The results are in good agreement with
measurements even though they differ slightly from the predictions of the model calculations where
all the additional terms are retained. In other words, an asymptotically consistent near-wall model
is more important to the prediction of compressible boundary-layer flows than the inclusion of
fluctuating density effects in the modeled equations. Finally, the predicted near-wall characteristics
are very similar to those calculated for incompressible flows. In the range of free-stream Mach
number tested, the calculated near-wall characteristics are essentially independent of Mach nurnber
and wall thermal boundary condition. Very near the wall, viscous diffusion of k is balanced by the
dissipation of k. Beyond y}, = 15, dissipation is balanced by mean shear production of k. In
between these two regions, viscous and turbulent diffusion of k, production of k and dissipation of
k are of importance in the budget of k. The additional compressible terms in the k-equation are
essentially negligible in the near-wall region up to y‘fv = 50. Perhaps, this is the reason why the

model also performs well when the additional compressible terms are neglected in the equations.
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7. Conclusions

The k and € equations for compressible flows are derived by assuming that there is no
dynamical similarity between the compressible and incompressible fields. Therefore, the
influences of fluctuating density on the mean and turbulence fields have to be accounted for in the
modeled equations. This can be accomplished by first re-casting the exact k and € equations into
forms that are similar to their incompressible counterparts. In other words, the viscous diffusion
and dissipation functions have to be defined exactly like their incompressible terms. This
procedure gives rise to additional terms in the k and € equations. These terms depend explicitly on
compressibility and vanish when the fluid density becomes constant. One extra term in the k-
equation is related to fluid dilatation and can be interpreted as compressible dissipation. The others
are production terms that depend on the gradients of the mean pressure and mean viscous shears.
All additional terms are found to be relatively unimportant in the near-wall region, or 0 y; < 50.
However, away from this region, they are quite significant compared to other terms in the
equations. This realization, therefore, allows the near-wall incompressible models to be extended
directly to compressible flows without modifications, while still maintaining the balance of the
modeled equations as a wall is approached. Models are proposed for the additional terms in the k
and € equations. The constants introduced by the new models are determined by calibrating the

calculations against measurements in compressible flows.

The near-wall two-equation model is used to calculate compressible flat plate boundary-layer
flows with different wall thermal boundary conditions and free-stream Mach numbers.
Comparisons are made with various mean flow measurements and with calculations of the k-
model. Good agreement is obtained between the present calculations and measurements. In
particular, the log-law for compressible flows is recovered and the slope of the log-law is found to
be fairly independent of free-stream Mach number for the range, 0 < M, < 10, tested. However,
this is not the case for the k- model. This particular model is formulated by assuming that

compressibility effects can be accounted for fully by the variable mean density alone. Therefore,
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the effects of fluctuating density on turbulent mixing are essentially neglected. Furthermore, the
model is not internally consistent as a wall is approached. Consequently, its prediction of the near-
wall flow is in error and this, in turn, leads to an incorrect prediction of the flow away from the
wall. The discrepancies can be attributed to a near-wall behavior that is not asymptotically correct

and to the neglect of fluctuating density effects.

The importance of an asymptotically correct near-wall model is illustrated by using the
present k-€ model minus all the additional compressible terms in the equations to calculate the same
experimental flows. Again, good agreement is obtained between calculations and measurements.
The only disagreements come in the predictions of the near-wall asymptotic behavior of the
turbulence quantities. Even then, the discrepancy only amounts to a few percentage of that
calculated by the k-€ model with all additional compressible terms included in the equations. The
calculated near-wall turbulence statistics are internally very consistent and approach their
asymptotic values correctly. Furthermore, they are found to be in good agreement with direct
simulation data obtained for incompressible flat plate boundary layers. This implies that variable
mean density has little or no effects in the near-wall region of boundary-layer flows with iree-
stream Mach number up to 10. Therefore, the dynamical field in a compressible flow behaves like
an incompressible one in the near-wall region. Finally, the Morkovin hypothesis is found to be

valid up to a free-stream Mach number of about 5.
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Table 1.

Asymptotic near-wall behavior of the turbulence properties.

Case M. | e,/0,| Model a | ay,x10%| a,gx107 et 2
55010504 | 2.244 | 1.0 | k-¢ models1| 00987 | 7.168 | -0.462 0.50
53011302 | 4.544 | 1.0 | k-emodels1| 00844 | 6.160 | -2.243 0.50
73050504 | 10.31 | 1.0 | ke modey1| 00787 | 6.830 | 4.550 0.50
73050504 | 1031 | 1.0 |k.emodel2| 0.0812 | 6950 | -70.4 0.51
59020105 | 5.29 | 0.92 | k.emodels1| 00795 | 6.230 | -6.823 0.50
59020105 | 5.29 | 0.92 |k-emodel2| 0.0801 | 6.290 | -13.17 0.50
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Table 2. k-€ model/1 calculated skin friction coefficient for different wall temperature

at M_, = 5.0 and Rg = 10% with a (Cp); =2.73 x 10°3.

0,/0, Calculated Cx103 | Calculated C¢(Cp); ng%fl)-le?g
0.8 1.07 0.392 0.392
0.6 1.15 0.421 0.434
0.4 1.22 0.447 0.495
0.2 1.26 0.461 0.580
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